919 research outputs found

    Infrared Photometry of Starless Dense Cores

    Full text link
    Deep JHKs photometry was obtained towards eight dense molecular cores and J-H vs. H-Ks color-color plots are presented. Our photometry, sensitive to the detection of a 1 solar mass, 1 X 10^6 year old star through approx. 35 - 50 magnitudes of visual extinction, shows no indication of the presence of star/disk systems based on J-H vs. H-Ks colors of detected objects. The stars detected towards the cores are generally spatially anti-correlated with core centers suggesting a background origin, although we cannot preclude the possibility that some stars detected at H and Ks alone, or Ks alone, are not low mass stars or brown dwarfs (< 0.3 Solar Masses) behind substantial amounts of visual extinction (e.g. 53 magnitudes for L183B). Lower limits to optical extinctions are estimated for the detected background stars, with high extinctions being encountered, in the extreme case ranging up to at least Av = 46, and probably higher. The extinction data are used to estimate cloud masses and densities which are comparable to those determined from molecular line studies. Variations in cloud extinctions are consistent with a systematic nature to cloud density distributions and column density variations and extinctions are found to be consistent with submillimeter wave continuum studies of similar regions. The results suggest that some cores have achieved significant column density contrasts (approx. 30) on sub-core scales (approx. 0.05 pc) without having formed known stars.Comment: 44 pages including tables and figures, accepted ApJ, March 24, 200

    The Carbon content in the Galactic CygnusX/DR21 star forming region

    Full text link
    Observations of Carbon bearing species are among the most important diagnostic probes of ongoing star formation. CO is a surrogate for H2_2 and is found in the vicinity of star formation sites. There, [CI] emission is thought to outline the dense molecular cores and extend into the lower density regions, where the impinging interstellar UV radiation field plays a critical role for the dissociation and ionization processes. Emission of ionized carbon ([CII]) is found to be even more extended than [CI] and is linking up with the ionized medium. These different tracers emphasize the importance of multi-wavelength studies to draw a coherent picture of the processes driving and driven by high mass star formation. Until now, large scale surveys were only done with low resolution, such as the COBE full sky survey, or were biased to a few selected bright sources (e.g. Yamamoto et al. 2001, Schneider et al. 2003). A broader basis of unbiased, high-resolution observations of [CI], CO, and [CII] may play a key role to probe the material processed by UV radiation.Comment: 4 pages, 4 figure, to appear in "Proceedings of the 4th Cologne-Bonn-Zermatt-Symposium", ed. S. Pfalzner, C. Kramer, C. Straubmeier, and A. Heithausen (Springer Verlag

    Infrared Signature of the Superconducting State in Pr(2-x)Ce(x)CuO(4)

    Full text link
    We measured the far infrared reflectivity of two superconducting Pr(2-x)Ce(x)CuO(4) films above and below Tc. The reflectivity in the superconducting state increases and the optical conductivity drops at low energies, in agreement with the opening of a (possibly) anisotropic superconducting gap. The maximum energy of the gap scales roughly with Tc as 2 Delta_{max} / kB Tc ~ 4.7. We determined absolute values of the penetration depth at 5 K as lambda_{ab} = (3300 +/- 700) A for x = 0.15 and lambda_{ab} = (2000 +/- 300) A for x = 0.17. A spectral weight analysis shows that the Ferrell-Glover-Tinkham sum rule is satisfied at conventional low energy scales \~ 4 Delta_{max}.Comment: 4 pages, 4 figure

    First results from the CALYPSO IRAM-PdBI survey. I. Kinematics of the inner envelope of NGC1333-IRAS2A

    Full text link
    The structure and kinematics of Class 0 protostars on scales of a few hundred AU is poorly known. Recent observations have revealed the presence of Keplerian disks with a diameter of 150-180 AU in L1527-IRS and VLA1623A, but it is not clear if such disks are common in Class 0 protostars. Here we present high-angular-resolution observations of two methanol lines in NGC1333-IRAS2A. We argue that these lines probe the inner envelope, and we use them to study the kinematics of this region. Our observations suggest the presence of a marginal velocity gradient normal to the direction of the outflow. However, the position velocity diagrams along the gradient direction appear inconsistent with a Keplerian disk. Instead, we suggest that the emission originates from the infalling and perhaps slowly rotating envelope, around a central protostar of 0.1-0.2 M_\odot. If a disk is present, it is smaller than the disk of L1527-IRS, perhaps suggesting that NGC1333-IRAS2A is younger.Comment: Accepted for publication in A&A letter

    On the optical conductivity of Electron-Doped Cuprates I: Mott Physics

    Full text link
    The doping and temperature dependent conductivity of electron-doped cuprates is analysed. The variation of kinetic energy with doping is shown to imply that the materials are approximately as strongly correlated as the hole-doped materials. The optical spectrum is fit to a quasiparticle scattering model; while the model fits the optical data well, gross inconsistencies with photoemission data are found, implying the presence of a large, strongly doping dependent Landau parameter

    Understanding star formation in molecular clouds I. Effects of line-of-sight contamination on the column density structure

    Full text link
    Column-density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With the Herschel satellite it is now possible to determine the column density from dust emission. We use observations and simulations to demonstrate how LOS contamination affects the column density probability distribution function (PDF). We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga, Maddalena, Carina and NGC3603. In perfect agreement with the simulations, we find that the PDFs become broader, the peak shifts to lower column densities, and the power-law tail of the PDF flattens after correction. All PDFs have a lognormal part for low column densities with a peak at Av~2, a deviation point (DP) from the lognormal at Av(DP)~4-5, and a power-law tail for higher column densities. Assuming a density distribution rho~r^-alpha, the slopes of the power-law tails correspond to alpha(PDF)=1.8, 1.75, and 2.5 for Auriga, Carina, and NGC3603 (alpha~1.5-2 is consistent gravitational collapse). We find that low-mass and high-mass SF clouds display differences in the overall column density structure. Massive clouds assemble more gas in smaller cloud volumes than low-mass SF ones. However, for both cloud types, the transition of the PDF from lognormal shape into power-law tail is found at the same column density (at Av~4-5 mag). Low-mass and high-mass SF clouds then have the same low column density distribution, most likely dominated by supersonic turbulence. At higher column densities, collapse and external pressure can form the power-law tail. The relative importance of the two processes can vary between clouds and thus lead to the observed differences in PDF and column density structure.Comment: A&A accepted, 15.12. 201

    First results from the CALYPSO IRAM-PdBI survey - III. Monopolar jets driven by a proto-binary system in NGC1333-IRAS2A

    Get PDF
    Context: The earliest evolutionary stages of low-mass protostars are characterised by hot and fast jets which remove angular momentum from the circumstellar disk, thus allowing mass accretion onto the central object. However, the launch mechanism is still being debated. Aims: We would like to exploit high-angular (~ 0.8") resolution and high-sensitivity images to investigate the origin of protostellar jets using typical molecular tracers of shocked regions, such as SiO and SO. Methods: We mapped the inner 22" of the NGC1333-IRAS2A protostar in SiO(5-4), SO(65-54), and the continuum emission at 1.4 mm using the IRAM Plateau de Bure interferometer in the framework of the CALYPSO IRAM large program. Results: For the first time, we disentangle the NGC1333-IRAS2A Class 0 object into a proto-binary system revealing two protostars (MM1, MM2) separated by ~ 560 AU, each of them driving their own jet, while past work considered a single protostar with a quadrupolar outflow. We reveal (i) a clumpy, fast (up to |V-VLSR| > 50 km/s), and blueshifted jet emerging from the brightest MM1 source, and (ii) a slower redshifted jet, driven by MM2. Silicon monoxide emission is a powerful tracer of high-excitation (Tkin > 100 K; n(H2) > 10^5 cm-3) jets close to the launching region. At the highest velocities, SO appears to mimic SiO tracing the jets, whereas at velocities close to the systemic one, SO is dominated by extended emission, tracing the cavity opened by the jet. Conclusions: Both jets are intrinsically monopolar, and intermittent in time. The dynamical time of the SiO clumps is < 30-90 yr, indicating that one-sided ejections from protostars can take place on these timescales.Comment: Astronomy & Astrophysics Letter, in pres

    Infall models of Class 0 protostars

    Full text link
    We have carried out radiative transfer calculations of infalling, dusty envelopes surrounding embedded protostars to understand the observed properties of the recently identified ``Class 0'' sources. To match the far-infrared peaks in the spectral energy distributions of objects such as the prototype Class 0 source VLA 1623, pure collapse models require mass infall rates \sim10^{-4}\msunyr1^{-1}. The radial intensity distributions predicted by such infall models are inconsistent with observations of VLA 1623 at sub-mm wavelengths, in agreement with the results of Andre et al. (1993) who found a density profile of ρr1/2\rho \propto r^{-1/2} rather than the expected ρr3/2\rho \propto r^{-3/2} gradient. To resolve this conflict, while still invoking infall to produce the outflow source at the center of VLA 1623, we suggest that the observed sub-mm intensity distribution is the sum of two components: an inner infall zone, plus an outer, more nearly constant-density region. This explanation of the observations requires that roughly half the total mass observed within 2000 AU radius of the source lies in a region external to the infall zone. The column densities for this external region are comparable to those found in the larger Oph A cloud within which VLA 1623 is embedded. The extreme environments of Class 0 sources lead us to suggest an alternative or additional interpretation of these objects: rather than simply concluding with Andre et al. that Class 0 objects only represent the earliest phases of protostellar collapse, and ultimately evolve into older ``Class I'' protostars, we suggest that many Class 0 sources could be the protostars of very dense regions. (Shortened)Comment: 22 pages, including 3 PostScript figures, accepted for publication in The Astrophysical Journa

    Do Proto-Jovian Planets Drive Outflows?

    Get PDF
    We discuss the possibility that gaseous giant planets drive strong outflows during early phases of their formation. We consider the range of parameters appropriate for magneto-centrifugally driven stellar and disk outflow models and find that if the proto-Jovian planet or accretion disk had a magnetic field of >~ 10 Gauss and moderate mass inflow rates through the disk of less than 10^-7 M_J/yr that it is possible to drive an outflow. Estimates based both on scaling from empirical laws observed in proto-stellar outflows and the magneto-centrigugal disk and stellar+disk wind models suggest that winds with mass outflow rates of 10^-8 M_J/yr and velocities of order ~ 20 km/s could be driven from proto-Jovian planets. Prospects for detection and some implications for the formation of the solar system are briefly discussed.Comment: AAS Latex, accepted for Ap
    corecore